ar X iv : m at h / 03 10 01 7 v 1 [ m at h . C A ] 1 O ct 2 00 3 Change of Variable for Multi - dimensional Integral 4 March 2003

نویسنده

  • Isidore Fleischer
چکیده

The change of variable theorem is proved under the sole hypothesis of differentiability of the transformation. Specifically, it is shown under this hypothesis that the transformed integral equals the given one over every measurable subset on which the transformation is injective; that countably many of these subsets cover the domain of invertibility; and that its complement – the domain of non-invertibility – is measurable and so may be broken off and handled separately. A.M.S. Subj. Classification 26B12, 26B15, 28A75.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : m at h / 03 08 02 3 v 2 [ m at h . Q A ] 1 3 O ct 2 00 3 MONOMIAL HOPF ALGEBRAS

Let K be a field of characteristic 0 containing all roots of unity. We classified all the Hopf structures on monomial K-coalgebras, or, in dual version, on monomial K-algebras.

متن کامل

ar X iv : a st ro - p h / 01 03 44 4 v 1 2 7 M ar 2 00 1 From Centimeter to Millimeter Wavelengths : A High Angular Resolution Study of 3 C 273

We monitored 3C 273 with VLBI at 15–86 GHz since 1990. We discuss component trajectories, opacity effects, a rotating jet, and outburst-ejection relations from Gamma-ray to radio bands.

متن کامل

ar X iv : m at h / 03 10 11 1 v 1 [ m at h . G T ] 8 O ct 2 00 3 On Kontsevich Integral of torus knots ∗

We study the unwheeled rational Kontsevich integral of torus knots. We give a precise formula for these invariants up to loop degree 3 and show that they appear as a coloring of simple diagrams. We show that they behave under cyclic branched coverings in a very simple way. Our proof is combinatorial: it uses the results of Wheels and Wheelings and new decorations of diagrams.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003